
italian version
Aims :
To
provide students with advanced techniques for
the optimal control of stochastic systems.
Topics :
- Elements of probability theory
and stochastic processes.
- Minimum variance estimate. Orthogonal projection
lemma.
- The Kalman filter. Optimal smoothers and predictors.
- Least square identification of dynamic processes.
- Optimal minimum variance control.
- Adaptive control.
- Optimal linear, quadratic, gaussian control.
Textbooks :
- Lectures notes.
- A. Jazwinski, “Stochastic Processes and
Filtering Theory”, Academic Press, N.Y.
,1970.
- A.P. Sage, J. Melsa, “Estimation Theory
with Applications to Communications and Control”,
Mc- Graw-Hill, N.Y., 1971.
- A. Gelb, “Applied Optimal Estimation”,
The Analytic Sciences Corporation, Cambridge,
1974.
- P.E.Wellstead, M.B.Zarrop,”Self-tuning
Systems”, John Wiley & Sons, Chichester,
1991.
- R.Iserman, ”Digital Control Systems”,
Vol. 2, Springer-Verlag, Berlino, 1989.
- F. Lewis, ”Applied Optimal Control &
Estimation”, Prentice-Hall, Englewood Cliffs,
1992.
- B.D.O.Anderson, J.B. Moore,”Optimal Control,
Linear Quadratic Methods”, Prentice-Hall,
Englewood Cliffs, 1989.
- H. Kwakernaak, R.Sivan,”Linear Optimal
Control Systems”, Wiley-Interscience, N.Y.,
1995.
Exam :
The final examination consists of
an oral test. Usually, ther first question needs
a written answer.
Tutorial Session :
Everyday upon telephone appointment.
|